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Abstract
The equation of the orbits (in the configuration space) and of the hodographs
(in the ‘momentum’ plane) for the ‘curved’ Kepler and harmonic oscillator
systems, living in a configuration space of any constant curvature and either
signature type, are derived by purely algebraic means. This result extends to
the ‘curved’ Kepler or harmonic oscillator for the classical Hamilton derivation
of the orbits of the Euclidean Kepler problem through its hodographs. In
both cases, the fundamental property allowing these derivations to work is the
superintegrability of the ‘curved’ Kepler and harmonic oscillator, no matter
whether the constant curvature of the configuration space is zero or not, or
whether the configuration space metric is Riemannian or Lorentzian. In the
‘curved’ case the basic result does not refer to the ‘velocity hodograph’ but to
the ‘momentum hodograph’; both coincide in a Euclidean configuration space,
but only the latter is unambiguously defined in all curved spaces.

PACS numbers: 02.30.Hq, 02.40.Ky, 45.20.JJ
Mathematics Subject Classification: 37J35, 70H06, 37J15, 70G45

1. Introduction

The isotropic harmonic oscillator V = 1
2ω2

0r
2 and the Kepler potential V = −k/r are two

distinguished potentials in classical as well as in quantum mechanics. From the physical
viewpoint, the harmonic oscillator arises as the osculating form of any potential around stable
equilibria; it governs small oscillations and elementary quantum excitations. On the other
hand, the Kepler potential dependence describes forces found in the solar system and in the
hydrogen atom.
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Both potentials are endowed with a mathematically important property:
superintegrability. As mechanical systems on a 3D configuration space, they allow for the
maximal number of functionally independent constants of motion (this number is 5 for a 6D
phase space). The classical Bertrand theorem [1] states that the only central potentials all
whose bounded (periodic) orbits are closed are precisely these two potentials. At the quantum
level, these properties entail two facts: energy eigenvalues depend on a single quantum number
and energy eigenfunctions can be explicitly computed (in several coordinate systems) in terms
of classical functions of mathematical physics.

The existence of such a large set of conserved quantities (or operators) comes from hidden
symmetries larger than the obvious SO(3) one exhibited by the purely radial dependence.
Rotational invariance leads to the constancy of angular momentum J, thus the motion takes
place in a 2D plane through the origin; it then suffices to consider the systems in 2D.
Additionally, the Kepler potential has a specific vector constant of motion, the Laplace vector,
usually known as the ‘Runge–Lenz’ vector [2–4], whose standard Cartesian components are

A1 = J ẏ − k cos φ, A2 = −J ẋ − k sin φ, (1)

while the harmonic oscillator has a conserved symmetric tensor constant of motion, called the
Fradkin tensor [5, 6], whose components are

F11 = (ẋ)2 + ω2
0x

2, F12 = F21 = ẋẏ + ω2
0xy, F22 = (ẏ)2 + ω2

0y
2. (2)

(the notation here is standard: (x, y) are Cartesian and (r, φ) are polar coordinates in the
Euclidean plane, and J refers to the angular momentum, a scalar in 2D).

Related to their superintegrability, both the harmonic oscillator and Kepler potentials
display separability for their Hamilton–Jacobi equations in several coordinate systems: this is
called multiseparability. Both systems are trivially separable in polar coordinates; further to
this the harmonic oscillator is separable in any member of a one-parameter family of Cartesian
coordinates, with any orientation for the axes, and the Kepler problem is separable in a one-
parameter family of parabolic coordinates, with a focus at the origin and any orientation for
the axis [7]. While separability in polar coordinates is an obvious consequence of the most
stringent rotational invariance, the additional separability exhibited by the harmonic oscillator
and Kepler potentials is specific to the r2 and 1/r radial dependences, and singles them out
among the general radial potentials V (r). Superintegrability and multiseparability are two
rather fragile properties, which are destroyed by almost any perturbation in the functional form
of the potential (we recall that there are however non-central superintegrable deformations of
both potentials, as the Smorodinski–Winternitz potentials [8]).

We have recently shown [7, 9] that if the Euclidean configuration space is replaced by
a space with any constant curvature and any signature type (a Cayley–Klein space S2

κ1[κ2]),
there exist potentials worthy of the name ‘curved harmonic oscillator’ and ‘curved Kepler
potential’, which are still superintegrable in these spaces and reduce to the ordinary harmonic
oscillator and the Kepler potential when the curvature of the configuration space vanishes and
its signature is Riemannian. For the two Riemannian spaces (positive definite metric) with
nonzero constant curvature κ—the sphere S2

κ and the hyperbolic plane H2
κ—, the corresponding

Kepler or harmonic oscillator potentials have been known since a long time; see historical
references in [10].

Our approach uses a Cayley–Klein-type framework (hereafter CK), dealing
simultaneously with all the spaces S2

κ1[κ2] in terms of two real parameters: κ1 is the constant
curvature and the metric is locally reducible to the form diag(1, κ2). Then results can be
obtained for all the configuration spaces S2

κ1[κ2] in a single run, all the expressions containing
two free parameters κ1, κ2. Configuration spaces with a locally Minkowskian metric of any
constant curvature are also included in this family. Motion in a Lorentzian configuration space
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has been much less explored [11], and even less in its anti-de Sitter or de Sitter curved relatives,
so this ‘CK parametric approach’ opens views to a new field and goes beyond a unification of
previously known results.

The outstanding properties of the Euclidean harmonic oscillator and Kepler potentials
are indeed generic for the ‘general curved’ harmonic oscillator and the Kepler potentials in
any S2

κ1[κ2]. In a recent note [12] we announced a complete, fully algebraic derivation of the
classical orbits for the ‘curved’ Kepler potential in the CK space S2

κ1[κ2] following directly
from its superintegrable character. These orbits are always conics with a focus at the potential
origin. This derivation is also closely related to a striking result by Hamilton [13]: for the
Kepler motion in the Euclidean plane, hodographs are circles, and the conic character of the
orbits can be easily derived (indeed this gives the simplest derivation, something which seems
not to be as widely known as it should).

On the historical side, we must recall that (in the Euclidean case, of course) the idea
to get the orbit starting from the specifically Keplerian-conserved quantities, thus bypassing
any integration of motion equations, is however much older, antedating Hamilton by more
than a century (see [2, 3]). We believe that the question on whether it is possible to extend
this derivation to the Kepler motion in a curved general CK configuration space has not been
discussed in the literature, perhaps because the literal extension, considering the velocity
hodographs, does not make sense in curved spaces, where parallel transport of vectors is path
dependent.

In this paper we obtain both orbits and momentum hodographs for the Kepler and harmonic
oscillator in a general configuration space with any constant curvature and any signature
type, and link this derivation to the superintegrability of these systems in a most direct
way.

The derivation leans on two types of identities. One identity, among the Noether momenta
in any S2

κ1[κ2], is ‘universal’: it is independent of the potential and has the same explicit form
in all the CK spaces S2

κ1[κ2]. The remaining identities are specific for the ‘curved’ Kepler and
harmonic oscillator and appear as a consequence of the superintegrability of these systems.
These identities are essentially the functional relations among the basic (quadratic) integrals
of motion, which imply and are implied by some identities among functions defined in
configuration space.

The scheme of the paper is as follows. In section 2 we provide all necessary details to
deal with dynamics in a configuration CK space, by using the CK approach based on two
parameters κ1, κ2. We introduce the Noether momenta, the ‘universal’ fundamental relation
linking these momenta in S2

κ1[κ2], and we discuss the (quadratic) superintegrability of these
systems in terms of Noether momenta.

Section 3 is devoted to the Kepler problem in S2
κ1[κ2], with the emphasis on the

identities among some functions defined on the configuration space which are behind the
superintegrability of the Kepler potential. Blending these identities with the fundamental
identity among momenta in two different ways leads directly and algebraically to the equations
of either configuration space orbits or momentum hodographs. Specialization to the case of
a Euclidean configuration space recovers the already mentioned classical Hamilton approach,
so section 3 can be considered as the ‘curved’ extension of Hamilton’s results.

In section 4, the question is discussed for the harmonic oscillator; here the situation is
slightly more complicated, as the additional conserved quantity is a symmetric tensor, but the
logic in the derivation remains the same: superintegrability leads to some functions defined on
a configuration space, satisfying some identities; blending these identities to the ‘universal’
fundamental one in two different ways gives both the configuration space orbits and the
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Table 1. The nine standard two-dimensional CK spaces S2
κ1[κ2].

Measure of distance and sign of κ1

Measure of angle Elliptic Parabolic Hyperbolic
and sign of κ2 κ1 = 1 κ1 = 0 κ1 = −1

Elliptic κ2 = 1 Elliptic Euclidean Hyperbolic
S2 E2 H2

Parabolic κ2 = 0 Co-Euclidean Galilean Co-Minkowskian
Oscillating NH Expanding NH
ANH1+1 G1+1 NH1+1

Hyperbolic κ2 = −1 Co-Hyperbolic Minkowskian Doubly hyperbolic
Anti-de Sitter De Sitter
AdS1+1 M1+1 dS1+1

momentum hodographs for the ‘curved’ harmonic oscillator. Again, this can be considered as
the ‘curved’ extension of the well-known properties of the harmonic oscillator in the Euclidean
configuration space.

In particular, we show that the orbits for the ‘curved’ Kepler potential in the CK space
S2

κ1[κ2] are conics with a focus at the origin, while the momentum hodographs are cycles, the
general ‘curved’ analogues of circles [14]. For the ‘curved’ harmonic oscillator in the general
S2

κ1[κ2], the orbits are centred conics in any S2
κ1[κ2] and the momentum hodographs are ellipses.

Section 5 gives a cursory look to the problem of extending the classical Bohlin
transformation to the curved case. This extension exists and relates the curved Kepler problem
to the curved harmonic oscillator in a way quite similar to the known z �→ z2 Euclidean
transformation [15, 16].

We close the paper with some comments in the last section.
To make the paper self-contained, two short appendices provide some basic information

on non-Euclidean coordinates and conics in a general Cayley–Klein space.

2. Geometry and dynamics on a CK space

2.1. Geometry of a CK space

We denote by S2
κ1[κ2] a 2D space with constant curvature κ1 and metric of a signature type

(1, κ2). By rescaling lengths and angles, each of the two parameters κ1, κ2 can be brought
to a standard value 1, 0,−1 and the nine combinations correspond to the so-called standard
Cayley–Klein CK spaces. These nine spaces can be conveniently displayed in table 1: the
three rows accommodate spaces with either a Riemannian, degenerate and pseudo-Riemannian
(Lorentzian) metric, according to the sign of κ2, and along each row we find the spaces with
constant curvature, positive, zero or negative. For more details see [17–19].

The symmetric homogeneous space S2
κ1[κ2] admits a (maximal) three-dimensional

isometry Lie group, denoted as SOκ1,κ2(3). This group is generated by a three-dimensional Lie
algebra soκ1,κ2(3) whose generators P1, P2 and J are given in the ‘vector’ matrix realization
as

P1 =
⎛
⎝0 −κ1 0

1 0 0
0 0 0

⎞
⎠ , P2 =

⎛
⎝0 0 −κ1κ2

0 0 0
1 0 0

⎞
⎠ , J =

⎛
⎝0 0 0

0 0 −κ2

0 1 0

⎞
⎠ , (3)
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with Lie commutation relations

[J, P1] = P2, [J, P2] = −κ2P1, [P1, P2] = κ1J. (4)

When both constants are positive, the space S2
κ1[κ2] is a two-dimensional sphere; the

standard S2 corresponds to the choice κ1 = 1, κ2 = 1; other standard choices are
κ1 = 0, κ2 = 1(≡ E2) or κ1 = −1, κ2 = 1(≡ H2), etc. The remaining six standard spaces are
the anti-Newton–Hooke space ANH1+1, Galilean space G1+1, Newton–Hooke space NH1+1;
anti-de Sitter sphere AdS1+1, Minkowskian space M1+1 and de Sitter sphere dS1+1.

In each case, (4) reduces to the corresponding commutation relations for the isometry
algebras. When κ2 > 0, the algebra soκ1,κ2(3) is isomorphic to so(3), iso(2), so(2, 1) (related
to the three Riemannian cases in the first row) according to the sign of κ1. Likewise, when
κ2 < 0, the algebra soκ1,κ2(3) is isomorphic to so(2, 1), iso(1, 1), so(2, 1) according to the
sign of κ1 (the three pseudo-Riemannian—Lorentzian—cases in the last row). The subgroup
SOκ2(2) generated by J has κ2 as the unique label, and (P1, P2) behaves as a vector under these
rotations; this subgroup SOκ2(2) is isomorphic to either SO(2), ISO(1), SO(1, 1) according
to the sign of κ2.

We will use the κ-deformed ‘cosine’ Cκ(x) and ‘sine’ Sκ(x) functions:

Cκ(x) :=
⎧⎨
⎩

cos
√

κx

1
cosh

√−κx,

Sκ(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
κ

sin
√

κx κ > 0

x κ = 0

1√−κ
sinh

√−κx κ < 0,

(5)

as well as the ‘tangent’ Tκ(x) := Sκ(x)/Cκ(x). For κ �= 0 these functions are (scaled) circular
or hyperbolic trigonometric functions, reducing to them in the standard case κ = ±1. The
intermediate functions which appear for κ = 0 are the ‘parabolic cosine’ equal to the constant
function 1, and the ‘parabolic sine’ and ‘parabolic tangent’, both equal to identity linear
function of their variables. Exponentials of matrices (3) lead to one-parametric subgroups
exp(αP1), exp(βP2), exp(γ J ) of SOκ1,κ2(3) which can be expressed in terms of the labelled
‘cosine’ and ‘sine’ functions as

exp(αP1) =
⎛
⎝Cκ1(α) −κ1Sκ1(α) 0

Sκ1(α) Cκ1(α) 0
0 0 1

⎞
⎠ ,

exp(βP2) =
⎛
⎝Cκ1κ2(β) 0 −κ1κ2Sκ1κ2(β)

0 1 0
Sκ1κ2(β) 0 Cκ1κ2(β)

⎞
⎠ , (6)

exp(γ J) =
⎛
⎝1 0 0

0 Cκ2(γ ) −κ2Sκ2(γ )

0 Sκ2(γ ) Cκ2(γ )

⎞
⎠ .

This matrix group SOκ1,κ2(3) acts by matrix multiplication on an R
3 ambient space by

isometries of the ‘ambient space metric’:

ds2 = (ds0)2 + κ1(ds1)2 + κ1κ2(ds2)2, (7)

and the space S2
κ1[κ2] is the coset space SOκ1,κ2(3)/SOκ2(2), where SOκ2(2) is the

subgroup generated by J . The space S2
κ1[κ2] can be described as the orbit of the point

(s0, s1, s2) = (1, 0, 0) under the group action, an orbit �0 which is contained in the ‘sphere’
� ≡ (s0)2 + κ1(s

1)2 + κ1κ2(s
2)2 = 1. When κ1 �= 0, the natural metric on S2

κ1[κ2], which will
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always be denoted as g, is obtained from the metric induced on the orbit �0 by the CK ambient
space metric as

g ≡ gµν(q
1, q2)dqµdqν = dl2 = 1

κ1
ds2|�, (8)

where dl2 is well defined even if κ1 → 0, because ds2|� also vanishes in this limit, with a well-
defined quotient. With this metric, the scheme includes simultaneously the four well-known
realizations of

• the standard sphere S2 (with a Riemannian metric of curvature 1) as the submanifold
(s0)2 + (s1)2 + (s2)2 = 1 of the ambient 3D Euclidean space with ds2 = (ds0)2 + (ds1)2 +
(ds2)2;

• the standard hyperbolic plane H2 (with a Riemannian metric of curvature −1) as the
submanifold (s0)2 − (s1)2 − (s2)2 = 1 of the ambient (1+2)D Minkowskian space
ds2 = (ds0)2 − (ds1)2 − (ds2)2, note that g is directly positive definite here;

• the anti-de Sitter sphere AdS1+1 (with a pseudo-Riemannian metric of curvature 1) as the
submanifold (s0)2 + (s1)2 − (s2)2 = 1 of an ambient (2+1)d Minkowskian space with
ds2 = (ds0)2 + (ds1)2 − (ds2)2 and finally

• the de Sitter sphere dS1+1 (with a pseudo-Riemannian metric of curvature −1) as the
submanifold (s0)2 − (s1)2 + (s2)2 = 1 of an ambient (2+1)D Minkowskian space
ds2 = (ds0)2 − (ds1)2 + (ds2)2.

Spaces with vanishing curvature (as E2, M1+1) are described here as particular cases:
E2 corresponds to κ1 = 0, κ2 = 1, and M1+1 corresponds to κ1 = 0, κ2 = −1. In this CK
approach all expressions and results implicitly depend upon the parameters κ1, κ2 in such a way
that particularizing them to some values will always lead meaningfully to the expression or
result in the corresponding geometry without any need for a limiting procedure or contraction.

The space S2
κ1[κ2] can be referred to several systems of natural coordinates. The most

important are the polar (r, φ), parallel ‘1’ (x, v) and parallel ‘2’ (u, y). These coordinates are
described in appendix A, with figures A1 and A2 sketching the situation. A more detailed
description of polar and parallel coordinates in the general S2

κ1[κ2] can be found in [20]. Here,
it suffices to give the expressions of the ambient coordinates in terms of polar and parallel
intrinsic coordinates:⎛

⎝s0

s1

s2

⎞
⎠ =

⎛
⎝ Cκ1(r)

Sκ1(r)Cκ2(φ)

Sκ1(r)Sκ2(φ)

⎞
⎠ =

⎛
⎝Cκ1(x)Cκ1κ2(v)

Sκ1(x)

Cκ1(x)Sκ1κ2(v)

⎞
⎠ =

⎛
⎝Cκ1(u)Cκ1κ2(y)

Sκ1(u)Cκ1κ2(y)

Sκ1κ2(y)

⎞
⎠ , (9)

and the metric, say dl2 = gµν(q
1, q2) dqµ dqν in general coordinates, is here given as

dl2 = dr2 + κ2S
2
κ1

(r) dφ2 = dx2 + κ2C
2
κ1

(x) dv2 = C2
κ1κ2

(y) du2 + κ2 dy2. (10)

2.2. The CK Noether momenta

Consider now the motion of a particle in the configuration space S2
κ1[κ2] under a natural

mechanical-type Lagrangian, with a kinetic term given by the metric and possibly a potential
depending on the coordinates:

L = 1
2
gµν(q

1, q2)vqµvqν − V(q1, q2). (11)

Are there constants of motion for this Lagrangian which are linear in the velocities? This
happens when the Lagrangian has a Killing vector field as an exact Noether symmetry. The
Noether momenta are associated with the invariance under the three basic one-parameter
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subgroups in (6); these will also be denoted by P1, P2, J , and when computed as Lagrangian
classical mechanics dictates [7] are given in terms of velocities as [20]⎛

⎝P1

P2

J

⎞
⎠ =

⎛
⎝ Cκ2(φ)vr − κ2Cκ1(r)Sκ1(r)Sκ2(φ)vφ

κ2Sκ2(φ)vr + κ2Cκ1(r)Sκ1(r)Cκ2(φ)vφ

κ2S
2
κ1

(r)vφ

⎞
⎠ . (12)

The momenta P2 and J vanish identically when κ2 = 0. This is obviously linked to the
singular character of the corresponding Lagrangian, as the metric is degenerate when κ2 = 0.
But even in this singular case one may expect the geodesic motion to have precisely three non-
trivial constants of motion linear in the velocities. This suggests us to consider the quantities
defined as

P1 := P1, P2 := P2

κ2
J := J

κ2
, (13)

which when κ2 �= 0 are essentially equivalent to P1, P2, J but are instead well defined even if
κ2 = 0. In the following, we will refer to these new momenta as the CK Noether momenta:⎛

⎝P1

P2

J

⎞
⎠ =

⎛
⎝Cκ2(φ)vr − κ2Cκ1(r)Sκ1(r)Sκ2(φ)vφ

Sκ2(φ)vr + Cκ1(r)Sκ1(r)Cκ2(φ)vφ

S2
κ1

(r)vφ

⎞
⎠ . (14)

The complete expressions in parallel coordinates are not required in this paper, but we
shall need the expressions for P1 in ‘parallel 1’ coordinates (resp. P2 in ‘parallel 2’):

P1 = C2
κ1κ2

(y)vu, P2 = C2
κ1

(x)vv. (15)

In the standard Euclidean E2, as a consequence of κ1 = 0, the ‘accidental’ equalities
among coordinates u = x, v = y hold and the CK momenta P1,P2 reduce in Cartesian
coordinates as they should to

P1|E2 = vx = vu, P2|E2 = vv = vy. (16)

Back to the general CK case, the three CK momenta are linked, in all the CK spaces
S2

κ1[κ2], by a fundamental relation

s2P1 − s1P2 + s0J = 0, (17)

which is ‘universal’ in a double sense: It does not depend on the potential, and it has the same
form for all the CK spaces, i.e., it is explicitly independent of the parameters κ1, κ2. This
relation will be a basic tool in our approach and can be checked directly. In the standard
E2 case, this reduces to the well-known relation between angular and linear momentum
J = xP2 − yP1 = xvy − yvx . In any CK space S2

κ1[κ2], the relation (17) is well defined
and allows us to express any of the three Noether momenta P1,P2,J in terms of the two
remaining ones, with the coefficients depending on the coordinates.

2.3. Quadratic integrability and superintegrability in the CK spaces

Let us now focus our attention on potentials V(q1, q2) having constants of motion I quadratic
in the velocities. The most general possible form for such a constant would be

IK = Kµν(q
1, q2)vqµvqν + W(q1, q2). (18)

The requirement for IK to be a constant of motion translates into some conditions on Kµν

and W to be satisfied for the given data gµν,V . These conditions naturally split into two
subsets. The first subset is independent of the potential V and can be geometrically interpreted
as stating that the tensor Kµν should be a Killing tensor for the metric gµν . The most general
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solution to these equations in the generic case—and hence the most general Killing tensor in
the generic CK space S2

κ1[κ2]—is

Kµν(q
1, q2)vqµvqν = a0J 2 + a1P2

1 + a2P2
2 + 2a01JP1 + 2a02JP2 + 2a12P1P2, (19)

where a0, a1, a2, a01, a02, a12 are arbitrary constants; this means that there is a 6D set of Killing
tensors for all 2D CK spaces (the properties of Killing tensors defined in pseudo-Riemannian
spaces are studied in [21, 22], with a geometrical classification for the Minkowski space).
So for a constant of motion to be quadratic in the velocities is equivalent to be quadratic in
the CK momenta, with constant coefficients. This extends to second order the well-known
result: a constant of motion which is first order in the velocities necessarily equals to a linear
combination of the three basic CK momenta, with constant coefficients.

Once a Killing tensor Kµν has been fixed, the second subset of conditions which ensure
the constancy of (18) depends on the potential V and appears as a set of partial differential
equations for W which may or may not admit a solution. The compatibility condition for
this system is a single differential equation for the potential V containing as parameters the
constants a0, a1, a2, a01, a02, a12 of Kµν ; its solutions are those potentials for which a constant
of motion of the corresponding IK type exists. If the potential V is equal to zero (or to any
constant), then the compatibility conditions are identically satisfied for any Kµν ; this situation
is to be expected as in this case there are three first integrals linear in the velocities, J ,P1,P2,
whose six quadratic products are directly constants of I type (although ‘non-primitive’ ones)
with W = 0.

For an arbitrary potential V there is always a particular Killing tensor (K = 1
2 g) which

produces a constant of motion of type (18) with W = V: this is the (κ1, κ2)-‘energy’, denoted
as IE , whose part quadratic in the momenta is, up to a factor, the Casimir of the isometry
group SOκ1κ2(3) [23]. The constant IE expressed in terms of the Noether momenta is

IE = 1
2
gµν(q

1, q2)vqµvqν + V(q1, q2) = 1
2

(
P2

1 + κ2P2
2 + κ1κ2J 2) + V(q1, q2). (20)

Only potentials with a particular structure allow additional quadratic constants of motion
of I type. The characterization is the following [24, 25]: each Killing tensor determines a
coordinate system of confocal type in the space S2

κ1[κ2], and the potentials allowing a IK-
type quadratic constant of motion are precisely those which are separable in this confocal
coordinate system. For those V satisfying the compatibility condition, actual integration of
the set of differential equations determining W can be dispensed with, as W can also be found
‘a la Stäckel’ through the separable expression for the potential in the associated confocal
coordinates.

Superintegrable (quadratic) systems allow for (at least) two additional constants of
this type, and hence the corresponding potentials are multiseparable; they are very specific
potentials. The basics on the CK-type classification of superintegrable potentials has been
advanced in [9]. As mentioned in the introduction, two superintegrable potentials which allow
for the maximal number of additional constants are the ‘harmonic oscillator’ and the ‘Kepler
potential’ in the CK space S2

κ1[κ2]. We discuss these in the next sections.

3. The Kepler potential in curved spaces

3.1. The ‘curved’ Kepler potential and its conserved quantities

In any S2
κ1[κ2], the Kepler potential is defined to be [26, 27]

VK = − k

Tκ1(r)
. (21)
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For the history of this potential, see references in [10, 28]. A recent book is devoted to
the study of the Euclidean Kepler problem [29]. In the three Riemannian spaces of constant
curvature (the CK spaces with κ2 > 0), a rather physically natural criterion to provide a
‘curved’ version of the Kepler potential is to enforce the Gauss law in the corresponding CK
three-dimensional space; this leads to the potential (21) which has therefore been known since
a long time, starting from Lobachevsky himself. For quantum mechanics on the sphere, this
potential resurfaced in the paper by Schrödinger [27], shortly to be followed by Infeld and
Schild [26] who studied the hyperbolic space case.

This potential is superintegrable in any S2
κ1[κ2]. A first integral is linked to the invariance of

VK under rotations around the potential centre and leads to the constancy of angular momentum
J , and to the quadratic constant IJ 2 = J 2. In any S2

κ1[κ2], the potential (21) allows for two
additional constants of motion of types IJP1 , IJP2 , which are associated with the separability
of the Kepler potential in two equiparabolic ‘01’ and ‘20’ coordinate systems (see [7]). These
constants of motion are

IJP1 = JP1 + W01, W01 = kSκ2(φ)

IJP2 = JP2 + W02, W02 = kVκ2(φ),
(22)

where Vκ2(φ) is the CK version of the ‘versed sine’, Vκ2(φ) = (1−Cκ2(φ))/κ2; for κ2 = 0 this
reduces to the function φ2/2. Checking that IJP1 , IJP2 are constants of motion can be carried
out by a simple direct computation. A point which might easily pass unnoticed is the existence
of an identity, a consequence of C2

κ2
(φ) + κ2S

2
κ2

(φ) = 1, among the functions W01,W02:

(W01)
2 + W02 (κ2W02 − 2) = 0. (23)

The two constants IJP1 , IJP2 , together with the energy and the angular momentum,

IE = 1

2

(
P2

1 + κ2P2
2 + κ1κ2J 2) − k

Tκ1(r)
, IJ 2 = J 2, (24)

provide a set of four constants of motion. As the maximal number of functionally independent
constants of motion for this system is 3, a single relation among the four I above should exist.
This relation which is quadratic in I’s can be checked using (23) and reads

(IJP1)
2 + IJP2(κ2IJP2 − 2k) = (

2IE − κ1κ2IJ 2

)
IJ 2 . (25)

The two constants IJP1 , IJP2 can be seen as the components of a single Keplerian (conserved)
vector under the (sub)group SOκ2(2) of rotations around the origin in the space S2

κ1[κ2]. This
vector will be called here the CK eccentricity vector EEE ; along any evolution under the Kepler
potential, the (constant) values of the components of EEE will be denoted by E01, E02 and reads(

E01

E02

)
=

(
IJP1

IJP2

)
=

(
JP1 + W01

JP2 + W02

)
, (26)

and in terms of E01, E02 and the values of energy and angular momentum, (25) is written as

E2
01 + E02(κ2E02 − 2k) = (2E − κ1κ2J 2)J 2, (27)

which is well defined in all the CK spaces S2
κ1[κ2]. We will later describe the relation of EEE to

the ordinary Laplace–Runge–Lenz vector in the Euclidean case. For the moment, note the
appearance on the rhs of the specific combination (2E − κ1κ2J 2), which for the Euclidean
space reduces to 2E.

To sum up, the existence of a Keplerian additional conserved vector is not a specifically
Euclidean property, but still holds even if the configuration space is the general S2

κ1[κ2], with
any constant curvature and any signature. The ‘Riemannian’ part of this statement has been
known since a long time for the Kepler problem in S2

κ1
and H2

κ1
; these cases appear in our
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approach when κ2 = 1. The CK formalism also covers the cases where κ2 < 0, this is
the Kepler problem in a locally Minkowskian constant curvature configuration space, a case
which definitely has not been studied before. The existence of this vector constant is not
specific for the 2D case. For the motion of a particle under the ‘curved’ Kepler potential in
a ‘curved’ ND configuration space of Cayley–Klein type, there exists a ‘curved’ form for the
Laplace–Runge–Lenz vector, which for any N has been obtained by Herranz and Ballesteros
[30]. Thus, the existence of a (3D or even ND Euclidean) Laplace–Runge–Lenz vector is not
a specifically Euclidean property (note however that [30] uses the momenta P1, P2 and thus
extra factors κ2 appear at places when compared with the expressions for P1,P2 used in the
present paper).

3.2. The orbits of a particle moving in a ‘curved’ Kepler potential

The superintegrability of the Kepler problem on any S2
κ1[κ2] has a direct bearing on the orbits.

For the Kepler problem in the Euclidean plane, both Laplace (1799) and Hamilton (1845),
preceded by J Hermann (or Ermanno, 1710) and J I Bernoulli (1710) [2, 3, 31], were able to
derive the nature of the orbits as conics with a focus at the potential centre directly from the
existence of two new constants of motion. This derivation of the Kepler orbits does not seem to
be widely known. The superintegrability of the problem is also connected to another beautiful
result by Hamilton [13]: the ‘hodographs’ of the Euclidean Kepler problem are circles in the
velocity space (see the papers by Milnor [32] and Anosov [33] and references therein).

With some suitable shift in the interpretation, both results can be extended from the
Euclidean Kepler problem to its general ‘curved’ version. Let us start by finding the ‘curved’
Kepler orbits in any S2

κ1[κ2]. As here J itself is also a first integral, we may express both P1

and P2 in terms of the values E01, E02,J (which will be constants along any motion) and W
(which depends only on the coordinates):

P1 = 1

J
(E01 − W01) P2 = 1

J
(E02 − W02). (28)

Enforcing the universal fundamental relation (17) in the form s0J = s1P2 − s2P1 gives

s0J 2 = s1(E02 − W02) − s2(E01 − W01), (29)

but using (23) the terms coming from the functions W01,W02 simplify

−s1W02 + s2W01 = −s1kVκ2(φ) + s2kSκ2(φ) = kSκ1(r)
(−Cκ2(φ)Vκ2(φ) + S2

κ2
(φ)

)
= kSκ1(r)

(
1 − Cκ2(φ)

κ2

)
= kSκ1(r)Vκ2(φ)

= k

(√
(s1)2 + κ2(s2)2 − s1

κ2

)
. (30)

The result is well defined even when κ2 = 0 as it is seen clearly in some of the alternative
forms in the previous expression. Thus, we finally get the orbit equation in the ambient space
coordinates:

s0J 2 = s1E02 + s2E01 + k

(√
(s1)2 + κ2(s2)2 − s1

κ2

)
. (31)

This equation can be translated to any other coordinate system by using (9). In particular,
in polar coordinates, this equation is

1

Tκ1(r)
= 1

J 2

(
E02Cκ2(φ) + E01Sκ2(φ) + kVκ2(φ)

)
, (32)
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and in all S2
κ1[κ2] corresponds to a CK conic (i.e., a conic in the intrinsic sense of the geometry

of the CK space) with a focus at the origin. Under the previous form, the equation applies for
all CK spaces. A slight simplification is possible when κ2 �= 0, because in this case the sum
of a ‘cosine’ and ‘versed sine’ can be rewritten as the sum of a ‘constant’ and a ‘cosine’, at
the price of an (only apparent) indetermination when κ2 = 0:

1

Tκ1(r)
= 1

κ2J 2

(
k + (κ2E02 − k) Cκ2(φ) + κ2E01Sκ2(φ)

)
. (33)

The coefficients of Cκ2(φ) and Sκ2(φ) in this equation are the components of a vector to be
denoted as AAA, the CK Laplace–Runge–Lenz vector:(

A1

A2

)
:=

(
κ2E02 − k

−E01

)
=

(
κ2 (JP2 + W02) − k

−JP1 − W01

)
. (34)

In the Euclidean plane this vector reduces precisely to the Laplace–Runge–Lenz vector. In
intrinsic terms, the CK Laplace–Runge–Lenz vector is the Hodge κ2-dual of the eccentricity
vector (κ2 in the name recalls that the Hodge dual is taken in a flat plane with metric of
signature κ2) shifted by the constant vector (−k, 0):(

E01

E02

)
→

(
κ2E02

−E01

)
→

(
κ2E02

−E01

)
−

(
k

0

)
=

(
A1

A2

)
. (35)

When compared with the eccentricity vector, a point is worth noting: the eccentricity
vector (26) contains the relevant information on orbits for all CK spaces, but through the
(κ2)-Hodge-type duality and shifting involved in the transition to the vector AAA, the Laplace–
Runge–Lenz loses a part of this information when κ2 = 0; in this case the component A1 has
a value −k independently of the motion. Hence, the eccentricity vector should be looked at
as the ‘preferred CK form’ of the conserved Keplerian vector.

The naming here keeps the established name ‘Laplace–Runge–Lenz’ for the general CK
version (34) whose Euclidean specialization is the standard LRL vector and reserves the name
‘eccentricity’ vector for the general CK version of the Hamilton vector, which is meaningful
for all CK spaces. In the Euclidean case, [31] contains a lot of information on these vectors
and their variants in different systems.

The general form of the Kepler orbits in S2
κ1[κ2] is (32, 33), which represents a conic in

the CK space, with a focus at the origin. The type of the conic depends on the CK space and
on the values of the physical constants E01, E02 (or A1,A2). The family (33) includes, in any
CK space with κ2 �= 0, conics with CK eccentricity e, semilatus rectum p and orientation at
the periastron φ0:

1

Tκ1(r)
= 1√

κ2Tκ1κ2(p)

(
1 + eCκ2(φ − φ0)

)
= 1√

κ2Tκ1κ2(p)

(
1 + eCκ2(φ)Cκ2(φ0) + eκ2Sκ2(φ)Sκ2(φ0)

)
(36)

and the relation between geometric and physical constants is

(A1,A2) = ke(Cκ2(φ0),−Sκ2(φ0)),
√

κ2Tκ1κ2(p) = κ2J 2

k
, A2

1 + κ2A2
2 = k2e2.

(37)

The last relation can be compared with (27) for EEE , translated into terms of AAA:

A2
1 + κ2A2

2 = k2 + (2E − κ1κ2J 2)κ2J 2, (38)
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leading to the general relation among e and the energy and angular momentum:

e2 = 1 +
(2E − κ1κ2J 2)κ2J 2

k2
. (39)

All these previous relations reduce in the standard Euclidean plane (with the notational
changes (A1,A2)|E2 ≡ (A1, A2) and J |E2 ≡ J ) to the well known ones

(
A2

1 + A2
2

) = k2 + 2EJ 2, ‖A‖ = ke, e =
(

1 +
2EJ 2

k2

)1/2

. (40)

In any particular CK space, this family may include several types of conics. For instance,
in the Euclidean plane E2 ellipses appear for 0 < e < 1, but the family (36) also includes
parabolas for e = 1 and hyperbolas for e > 1; in E2 the class of the conic depends only
on e, but is independent of p. In the hyperbolic plane H2 the family (36) includes ellipses,
horoellipses, parabolas, horohyperbolas and hyperbolas, and in this case the class of the conic
given in (36) depends both on e and p, see [34].

If the polar axis is oriented along the ‘periastron’, then both the LRL vector and the
eccentricity vectors are carried to some standard reference positions:

A1 = ke, A2 = 0, E01 = 0, E02 = k(e + 1)

κ2
. (41)

All these equations are in full agreement with results previously known for the Kepler
problem in the three standard (κ2 = 1) Riemannian configuration spaces of constant curvature
(see [34] and references therein). For the ‘Kepler motion’ in constant curvature locally
Minkowskian spaces (κ2 < 0) these results seem to be new.

3.3. Momentum Hodographs for the ‘curved’ Kepler potentials are ‘cycles’

In this subsection, we look for a natural extension of the celebrated Hamilton result for the
Kepler problem. Essentially what Hamilton found was the following property: when the
particle moves in the Euclidean plane according to Newton’s equations under the Kepler
potential, its velocity vector (ẋ, ẏ) traces out a (Euclidean) circle in the velocity space. Using
this property it is possible to derive the orbits in a surprisingly direct way. The connection
with superintegrability is also direct, though not always mentioned: the circle character of
hodographs is equivalent to the constancy (in the Euclidean case) of the two quantities (1) (see
[32]).

The naive attempt to extend this result for the ‘velocity vector’ in the Kepler problem
on a curved configuration space soon finds a blocking stone: there is not any canonical
way to translate this velocity vector at each point of the trajectory to a common ‘origin’
in the velocity space. A seemingly natural possibility, the canonical parallel transport in a
configuration space, produces different results if done along different paths. Thus, thinking in
terms of the velocity vector does not seem to be a good standpoint to search for an extension
of Hamilton’s ‘hodograph’ result to a space with nonzero constant curvature.

But in the Euclidean space the components of the velocity coincide with the values of the
two Noether momenta P1,P2, as follows from the relation (16) in the standard Euclidean case
E2. Hence, (34) can be rewritten in the Euclidean standard case as

A1|E2 = κ2(JP2 + kVκ2(φ))|E2 − k = J ẏ + k(1 − cos φ) − k = J ẏ − k cos φ

A2|E2 = (−JP1 − kSκ2(φ))|E2 = −J ẋ − k sin φ,
(42)

which is precisely the well-known form given in the introduction (1). We recall that it suffices
to enforce the Euclidean relation J = xẏ−yẋ with ẋ, ẏ taken from (1) to get the orbit equation;
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this was the path followed by Hamilton, who arrived at these constants as a consequence of the
circle character of the hodograph, which he established directly from the Newton’s equations
and the law of areas.

Back to the general CK case, the CK momenta P1,P2 are defined for any curvature and
signature type of the configuration space, and if in (28) we replace the functions W by their
expressions, we obtain the parametric equations of the hodograph, with the polar angle as a
parameter:

P1 = 1

J
(
E01 − kSκ2(φ)

)
P2 = 1

J
(
E02 − kVκ2(φ)

)
, (43)

The hodograph equation can be obtained most directly by enforcing the identity (23) for
W01 = E01 − P1J and W02 = E02 − P2J ; after expanding and simplifying, this gives(

P1 − E01

J

)2

+ κ2

(
P2 − E02 − k

κ2

J

)2

= k2

κ2J 2
, (44)

which is the equation of a cycle in the (P1,P2)-plane, with centre (E01/J , (E02 − k/κ2)J )

and ‘radius’ k/(
√

κ2J ), relative to the natural geometry of the P-plane which is based on
the quadratic form P2

1 + κ2P2
2 , as suggested by (20); this intrinsic geometry is independent of

the curvature κ1 and depends only on the signature label κ2. In this (P1,P2)-plane (whose
standard forms are E2, G1+1, M1+1 according to the three standard choices for κ2), cycles mean
‘curves of constant curvature’; in E2 these curves are circles, with straight lines as a limit case.

Hence if the configuration space is a classical Riemannian space (κ2 = 1) of constant
curvature, and the term ‘hodograph’ is understood as the curve traced out in the (Euclidean)
(P1,P2)-plane, then this curve is a standard Euclidean cycle (either a circle or a straight line)
regardless of the value of the curvature κ1 of the configuration space. And if the configuration
space is a Lorentzian space (κ2 = −1) of constant curvature (including the Minkowski space
as κ1 = 0), then the ‘hodograph’ traces out (some arc of) a ‘cycle’ in the Minkowskian
(P1,P2)-plane; these Minkowskian cycles appear to the affine eye as equilateral hyperbolas.
Finally, when κ2 = 0 then for any κ1 the (P1,P2)-plane has a Galilean geometry, and the
cycles are either special lines or affine parabolas with special axis.

4. The harmonic oscillator in curved spaces

In any CK space S2
κ1[κ2] of constant curvature the ‘harmonic oscillator’ (HO) potential is

defined to be:

VHO = 1
2
ω2

0T
2
κ1

(r). (45)

In the sphere S2 this potential was first considered at the end of 19th century [35] and was
studied later on by Higgs [36] and Leemon [37]. Let us first give the expressions of the
potential in the three basic coordinate systems (see [7]):

T 2
κ1

(r) = T 2
κ1

(x) + κ2
T 2

κ1κ2
(v)

C2
κ1

(x)
= T 2

κ1
(u)

C2
κ1κ2

(y)
+ κ2T

2
κ1κ2

(y). (46)

These relations display the separability of the HO not only in polar, but also in parallel ‘1’ and
‘2’ coordinates (VHO also allows separability in equiparabolic ‘12’ coordinates). This means
that, additionally to the energy, the motion of a ‘curved’ harmonic oscillator has constants of
motion of types IJ 2 , IP2

1
, IP2

2
, IP1P2 . The full expressions are

IJ 2 = J 2 IP2
1

= P2
1 + W11(q1, q2)

IP2
2

= P2
2 + W22(q1, q2) IP1P2 = P1P2 + W12(q1, q2),

(47)
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with W11(q1, q2),W22(q1, q2),W12(q1, q2) given in the three coordinate systems by

W11 = ω2
0T

2
κ1

(r)C2
κ2

(φ) = ω2
0

T 2
κ1

(x)

C2
κ1κ2

(v)
= ω2

0T
2
κ1

(u)

W22 = ω2
0T

2
κ1

(r)S2
κ2

(φ) = ω2
0T

2
κ1κ2

(v) = ω2
0

T 2
κ1κ2

(y)

C2
κ1

(u)

W12 = ω2
0T

2
κ1

(r)Cκ2(φ)Sκ2(φ) = ω2
0
Tκ1(x)Tκ1κ2(v)

Cκ1κ2(v)
= ω2

0
Tκ1(u)Tκ1κ2(y)

Cκ1(u)
= ω2

0Tκ1(u)Tκ1κ2(v).

(48)

Remark that W11,W22,W12 are well defined for any CK space and they do not vanish
identically in none of them. In terms of the ambient space coordinates, these functions
are

VHO = ω2
0
(s1)2 + κ2(s

2)2

(s0)2
,

W11 = ω2
0
(s1)2

(s0)2
, W22 = ω2

0
(s2)2

(s0)2
, W12 = ω2

0
(s1)(s2)

(s0)2
.

(49)

We recall here the existence of two identities among the functions Wij and the potential:
1
2 (W11 + κ2W22) = VHO

W11W22 − W2
12 = 0.

(50)

These equations can be checked directly. Both are obvious in terms of the ambient space
coordinates (49); the first also follows as a consequence of the basic identity between Cκ2(φ)

and Sκ2(φ) or, alternatively, as a consequence of the following identity holding for all values
of its arguments (a, b), applied to the two pairs of variables (x, v) and (u, y):

T 2
κ1

(a) + κ2
T 2

κ1κ2
(b)

C2
κ1

(a)
= T 2

κ1
(a)

C2
κ1κ2

(b)
+ κ2T

2
κ1κ2

(b) (51)

Together with the energy IE there are thus five different constants of I type for the HO
motion. The maximum number of functionally independent constants in a system with a 2D
configuration space is 3, thus one may expect two functionally independent relations among
the five I constants. These can be established using the two identities (50):

IE = 1
2

(
IP2

1
+ κ2IP2

2
+ κ1κ2IJ 2

)
IP2

1
IP2

2
− (

IP1P2

)2 = ω2
0IJ 2 .

(52)

The first equation in (52) is the linear relation between the energy constant and three
constants IP2

1
, IP2

2
, IJ 2 (when any system allows three separate constants of motion of the

types IP2
1
, IP2

2
, IJ 2 , this relation with the energy should necessarily hold). The second relation

in (52) is a quadratic relation among IP2
1
, IP2

2
, IP1P2 , IJ 2 , which is well known in the Euclidean

oscillator case; surprisingly this relation remains unchanged (no explicit κ1, κ2) for all CK
spaces.

Taken altogether the constants IP2
1
, IP2

2
, IP1P2 are the components of the general CK

(symmetric) ‘Fradkin tensor’: in S2
κ1[κ2](

F11 F12

F21 F22

)
=

(
IP2

1
IP1P2

IP1P2 IP2
2

)
=

(
P2

1 + W11(q1, q2) P1P2 + W12(q1, q2)

P1P2 + W12(q1, q2) P2
2 + W22(q1, q2)

)
. (53)

In the standard Euclidean case E2 these constants of motion reduce as they should to the
ordinary Fradkin tensor [6, 5] (in agreement with (2)):

IP2
1

∣∣
E2 = P2

1 + ω2
0x

2, IP1P2

∣∣
E2 = P1P2 + ω2

0xy, IP2
2

∣∣
E2 = P2

2 + ω2
0y

2. (54)
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Thus an essential property of the Euclidean harmonic oscillator, to have a tensor constant of
motion, survives for the ‘curved’ harmonic oscillator in any CK space S2

κ1[κ2]. And the square
of the angular momentum J 2 = IJ 2 is related to the determinant of the Fradkin tensor in a
‘universal’ way, explicitly independent of κ1 and κ2:

det(F) = ω2
0IJ 2 . (55)

Let us now see how to obtain the equation of the HO orbits in any CK space, directly
from the superintegrable character. This only requires to enforce the universal fundamental
relation (17) among the CK momenta taken from the conserved quantities IJ 2 , IP2

1
, IP2

2
, IP1P2 .

Starting from (17) in the form s0J = s1P2 − s2P1, squaring it

(s0)2J 2 = (s1)2P2
2 − 2s1s2P1P2 + (s2)2P2

1 , (56)

and drawing the three products P2
1 ,P1P2,P2

2 from the first integrals

P2
1 = F11 − W11(q1, q2), P1P2 = F12 − W12(q1, q2), P2

2 = F22 − W22(q1, q2),

(57)

we get

(s0)2J 2 = (s1)2(F22 − W22) − 2s1s2(F12 − W12) + (s2)2(F11 − W11). (58)

This relation does not involve any longer the CK momenta P1,P2 (which are not constant
along the motion) but only the constant J ,Fµν and the coordinates; this is the orbit equation.
But a further simplification is still possible, as it follows directly from (49):

(s1)2W22 − 2s1s2W12 + (s2)2W11 = 0, (59)

so the equation of the orbit reduces in terms of the ambient space coordinates (s0, s1, s2) to

(s0)2J 2 = (s1)2F22 − 2s1s2F12 + (s2)2F11, (60)

which turns out to be, for all values of κ1, κ2, a CK conic in the intrinsic geometry of S2
κ1[κ2],

centred at the origin of the potential. By replacing the ambient coordinates by any other choice
among (r, φ), (x, v) or (u, y) after (9), we get the orbit equation in that coordinate system. In
particular, with polar coordinates, we get

1

T 2
κ1

(r)
= ω2

0

F11F22 − F2
12

(
F11C

2
κ2

(φ) − 2F12Cκ2(φ)Sκ2(φ) + F22S
2
κ2

(φ)
)
. (61)

As a consequence of the additional relation ω2
0J 2 = F11F22−F2

12, the three quantitiesF11,F12

and F22 are a possible choice for a set of independent constants determining a particular orbit.
In all CK spaces, equation (61) includes ellipses with main semiaxis a, minor semiaxis

b and orientation φ0 of the main semiaxis relative to the chosen polar coordinate axis; its
equation is

1

T 2
κ1

(r)
= C2

κ2
(φ − φ0)

T 2
κ1

(a)
+

S2
κ2

(φ − φ0)

T 2
κ1κ2

(b)
, (62)

whence by comparing with (60) we obtain the relation between the ‘physical’ constants
F11,F12 and F22 and the geometric ones a, b and φ0 for elliptic orbits. If we choose the
direction of the main semiaxis as the origin of angles so that φ0 = 0 (this is always possible
when κ2 > 0; if κ2 < 0 there is another generic possibility), the relevant relation is

1

T 2
κ1

(r)
= ω2

0

F11F22

(
F22C

2
κ2

(φ) + F11S
2
κ2

(φ)
) = C2

κ2
(φ)

T 2
κ1

(a)
+

S2
κ2

(φ)

T 2
κ1κ2

(b)
, (63)
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with

F11 = ω2
0T

2
κ1

(a) ≡ 2E1, F12 = 0, F22 = ω2
0T

2
κ1κ2

(b) ≡ 2E2, (64)

and

J = ω0Tκ1(a)Tκ1κ2(b), E = E1 + κ2E2 + 1
2
κ1κ2J 2, (65)

so that the eigenvalues of the Fradkin tensor are the two ‘partial energies’ of the two 1D
harmonic oscillators in which the 2D system can be ‘decomposed’.

Equation (61) may include orbits which are not CK ‘ellipses’, but other type of centred
conics in the CK space S2

κ1[κ2]; this depends on the space S2
κ1[κ2] itself and eventually also on the

range of the values of Fµν . For instance, consider the hyperbolic plane H2 (κ1 < 0, κ2 > 0)

where the two semiaxes appear in (62) through a hyperbolic tangent, which stays bounded
for any real value of a; it is clear that the conics with F11 > ω2

0/−κ1 or F22 > ω2
0/−κ1κ2

are not ellipses, as they cannot be cast in the form (62). In the hyperbolic plane, the family
(61) of conics includes ellipses, equidistants and ultraellipses, depending on the values of the
‘physical constants’ F11,F12,F22, and even there exist regions in the (F11,F12,F22)-space
with no associated orbit at all.

By proceeding similarly with parallel coordinates, the equations of the oscillator orbits
can be obtained in these coordinates. Of course, the relations between the ‘physical constants’
of the orbit J ,F11,F12,F22 and the geometric invariants of the conic remain unchanged,
because they do not depend on the coordinates.

4.1. Momentum Hodographs for the harmonic oscillator

The complete symmetry between coordinates and momenta in the usual harmonic oscillator
implies the well-known fact that Euclidean hodographs are also ellipses. This property also
holds for the ‘curved’ harmonic oscillator in any CK space, as we show in this section. The
derivation is quite simple. We start from the orbit equation (60) in the form

J 2 = F22

(
s1

s0

)2

− 2F12

(
s1

s0

) (
s2

s0

)
+ F11

(
s2

s0

)2

. (66)

Now we use (50) and rewrite the orbit equation as

ω2
0J 2 = F22W11 − 2F12W12 + F11W22, (67)

but the coordinate functions Wij may be expressed in terms of the constant values of the
Fradkin tensor and of the CK momenta themselves Wij = Fij −PiPj , hence by replacing we
get

ω2
0J 2 = F22

(
F11 − P2

1

) − 2F12
(
F12 − P1P2

)
+ F11

(
F22 − P2

2

)
, (68)

where the terms quadratic in Fij on the rhs add altogether to 2 det F = 2ω2
0J 2. Simplifying

we get the hodograph equation as

ω2
0J 2 = F22P2

1 − 2F12P1P2 + F11P2
2 . (69)

In this equation P1 and P2 are the only variables; the remaining quantities are constants of
motion. This represents an ellipse with centre at the origin in the plane (P1,P2), whose natural
geometry only keeps the track of the signature type κ2 and is always flat, regardless of the
value of the curvature κ1 of the original CK space. Here, the ellipse semiaxes can be read
directly as in the Euclidean plane. In the standard position where F12 = 0 these semiaxes are

ω0J√
F22

= ω0J√
2E2

,
ω0J√
F11

= ω0J√
2E1

. (70)

The consistency of this result with all the previous ones is easily established.
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5. Transforming the harmonic oscillator into the Kepler problem in curved spaces: the
‘curved’ Bohlin transform

The Euclidean configuration plane can be understood as a complex plane, z = reiφ , in the
standard way. Then the complex transformation z �→ z2 maps origin-centred ‘Hooke’ ellipses
(the orbits of an attractive harmonic oscillator) to focus-centred ellipses (the negative energy
Keplerian orbits). Any Kepler ellipse can be obtained in this way, starting from a suitably
chosen Hooke ellipse. Under the same map, Kepler hyperbolas can be obtained as images of
the orbits of a repulsive harmonic oscillator, and Kepler parabolic orbits, which are limiting
cases of both elliptic and hyperbolic orbits, appear as the images of straight lines, which are
in turn the orbits of free motion, seen here as a ‘zero strength’ harmonic oscillator and hence
a limiting case of both attractive and repulsive oscillators. Behind this fact, referred to (at
least for Kepler ellipses) as the Bohlin theorem [38, 16] there is an interesting and intriguing
duality among the linear and inverse square central force laws, already observed by Newton
who found striking similarities between these two ‘principal cases’. In its modern formulation
(due originally to Kasner [39] and studied by Arnol’d [15]), this duality trades energy with the
‘coupling constant’ for the force (or the potential) and also extends to infinitely many other
pairs of dual force laws with non-integer exponents, with r−4, r−5, r−7 as the only integer
power force laws among dual pairs further to r and r−2 (see a very nice description in [16]).

An extension of the Bohlin transform to the constant curvature Riemannian spheres and
pseudospheres exists [40, 41]. Hence a very natural question would be to ascertain whether
there is a kind of ‘general’ Bohlin transform, relating the orbits of the curved harmonic
oscillator and Kepler potentials within the full CK scheme, and also covering the parameter κ2

and hence the constant curvature Lorentzian configuration spaces. We restrict here to a quite
simple derivation of this ‘general’ Bohlin transform, without entering into the details, which
would be worth of further discussion, specially in the Lorentzian case. Recall the polar form
of the orbits for the Kepler potential (36), with the choice φ0 = 0:

Tκ1(r) =
√

κ2Tκ1κ2(p)

1 + eCκ2(φ)
, (71)

and reexpress the polar equation for standard orbits of the harmonic oscillator (63), also with
the choice φ0 = 0, in terms of the double angle, to obtain:

T 2
κ1

(r) = 1

D − GCκ2(2φ)
, D = T 2

κ1
(a) + κ2T

2
κ1κ2

(b)

2κ2T 2
κ1

(a)T 2
κ1κ2

(b)
, G = T 2

κ1
(a) − κ2T

2
κ1κ2

(b)

2κ2T 2
κ1

(a)T 2
κ1κ2

(b)
,

(72)

(the notation conforms the one used in [20]). Then a simple comparison directly reveals the
required ‘curved’ extension of the Bohlin transformation, using the same procedure working
in the flat Euclidean case.

To describe this, denote by Cη the ‘complex’ plane defined as the set of numbers of the
form z = x + iy with x, y real, i2 = −η, and with the natural extension for sums and products
dictated by these rules, exactly as one does for the standard complex numbers. This endows Cη

with a structure of commutative algebra which coincides with the ordinary complex algebra
when η = 1 (or, after a simple rescaling, when η > 0). As a set Cη can be identified to
R

2 for any η, and the notation is chosen so that the standard algebra of complex numbers C

is the member with η = 1 of the family Cη, in analogy with the ordinary standard sphere
S2 being the member with κ1 = 1, κ2 = 1 of the CK spaces S2

κ1[κ2]. The family Cη also
encompasses two other algebraic systems: the double (or perplex or split-complex) numbers
when η < 0, with the standard double numbers C−1 ≡ C− occurring precisely for η = −1,
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and the Study (or ‘dual’) numbers C0 when η = 0. The algebra Cη is a composition algebra
for any η, but only when η > 0 it is a division algebra. The family of algebras Cη also appears
naturally in relation to CK geometries, both real [42] as well as ‘complex Hermitian’ type
ones [43].

Now consider the CK space S2
κ1[κ2] and associate with the point with polar coordinates

(r, φ) the ‘complex’ number z := Tκ1(r)e
iφ ∈ Cκ2 (note that the type of these ‘complex

numbers’ depends only on the signature type of the space, but not on its curvature). Under
z �→ z2, the modulus of z transform as Tκ1(r) → T 2

κ1
(r), and the argument as φ → 2φ,

hence the mapping z �→ z2 of Cη into itself carries curved Kepler orbits into curved harmonic
oscillator ones, as evident from comparing (71) and (72). This is the ‘curved’ extension of
the Bohlin transform. Note that both κ1, κ2 enter into the representation of points in the space
S2

κ1[κ2] as ‘complex’ numbers in Cκ2 ; the curvature κ1 appears explicitly in Tκ1(r) and the
signature type κ2 is implicit as minus the square of the imaginary unit i. The representation of
points in Minkowskian 1 + 1 spacetime as double numbers keeps the basic properties of the
representation of points of the Euclidean plane as complex numbers and has been rediscovered
many times. The existence of zero divisors in the algebra of double numbers is associated
with the existence of points with vanishing separation to the origin in the Minkowskian plane.

It seems that this connection among the curved Kepler and oscillator, as well as the
possibility of a more general ‘curved’ Kasner–Arnol’d duality are open questions worth of
further study. A specific point would be to relate the Bohlin transform to the general ‘curved’
Levi-Civita regularization for the Kepler problem developed in full detail in [44].

6. Conclusions

Starting from the superintegrability of the ‘curved’ Kepler and the harmonic oscillator potential
in any S2

κ1[κ2] with constant curvature κ1 and metric of signature type κ2, either Riemannian,
degenerate or Lorentzian, we have derived by purely algebraic means the equations of the
orbits and the momentum hodographs. This derivation hinges on two sets of identities, holding
similarly in all the CK spaces S2

κ1[κ2]. The identity in the first set relates the three Noether
momenta in a ‘universal way’, explicitly independent of the potential and the two parameters
κ1, κ2. The second set of identities relies on the superintegrability, and hence is specific to
the particular superintegrable system; these identities relate some functions defined on the
configuration space that appear in the quadratic constants of motion of I type. The interplay
between these elements leads in a surprisingly direct way to the equations of both the orbits
and the momentum hodographs for these systems. In particular, for the Kepler potential,
the configuration space orbits are always CK conics with a focus at the potential origin,
and the momentum hodographs are always CK cycles (or arcs of cycles) in the natural geometry
of the (P1,P2)-plane; this provides a generalization of the celebrated result by Hamilton on the
hodographs of the Kepler problem, a result which holds not only in the Euclidean configuration
space, but generically within the family of CK spaces. In the harmonic oscillator, the interplay
also leads very directly to the orbits, which are in all CK spaces conics centred at the origin, and
to the momentum hodographs, which are always CK ellipses (or arcs of ellipses) in the natural
geometry of the (P1,P2)-plane; this provides a generalization of the elementary well-known
ellipse character of the Euclidean harmonic oscillator hodographs.

We have also mentioned, but not studied in detail, the ‘curved’ extension of the Bohlin
transformation. The existence of striking similarities in the two Euclidean ‘linear’ and ‘inverse
square’ central potentials was already observed by Newton, who referred to these as the two
‘principal cases’ [16]; indeed, it seems that all these striking similarities continue to hold for
the curved harmonic oscillator and the Kepler problem in any CK configuration space.
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Figure A1. The ‘polar’ coordinates (r, φ). The diagram depicts the geometrical meaning of
the polar coordinates (r, φ) in a general CK space S2

κ1[κ2], both in the locally Riemannian case
κ2 > 0 (left) and in the pseudo-Riemannian case κ2 < 0 (right). In all the cases l1, l2, l are
geodesics, and l1, l2 are orthogonal. The light cone through O is also shown in the Lorentzian
diagram. The coordinate r has label κ1 while φ has label κ2. In the Riemannian case κ2 > 0, the
coordinate r is non-negative and vanishes at point O, where polar coordinates are singular and the
angular coordinate φ ranges in the interval [0, 2π/

√
κ2] with periodic conditions. In the pseudo-

Riemannian case r vanishes along the isotropes through O and would be pure imaginary in the
shaded area with spacelike separation to O. In the unshaded area the angle φ (as depicted) ranges in
the interval [−∞,∞] while in the shaded area φ is of the form π/(2

√
κ2) + φ̃ with φ̃ ∈ [−∞, ∞].

In both cases, for a given φ or φ̃ the natural range of r involves positive as well as negative values.
Note the natural interpretation of r and φ as canonical parameters of one-parameter subgroups of
translations along the line l (conjugated to translations along l1) or of rotations around the point O.
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Appendix A. The basic coordinates on two-dimensional Cayley–Klein manifolds

Consider the generic CK family of spaces S2
κ1[κ2], for any values of κ1, κ2. When κ2 is positive

a simple scaling may set κ1 = 1, and within this choice the family includes the three constant
curvature 2D Riemannian spaces S2

κ1
, E2, H2

κ1
. When κ2 is negative, it may be reduced to −1

and within this choice the CK spaces are Lorentzian manifolds of constant curvature AdS1+1
κ1

,
Minkowskian space M1+1 and de Sitter sphere dS1+1

κ1
. The coordinates employed in the paper,

(r, φ), (u, y) or (x, v), can be defined in the following way (the construction may be easily
visualized in the case of the sphere; for more details, refer to [20]): choose a point O a point on
S2

κ1[κ2], to be considered as the origin point, and let l1 be an oriented geodesic (timelike if κ2 is
non-positive, generated by P1) through O and l2 the oriented geodesic orthogonal to l1 through
O (hence spacelike if κ2 is non-positive and generated by P2). For a generic point Q (in some
suitable domains), consider the geodesic l joining O with Q, the geodesic l′2 through Q and
orthogonal to l1, intersecting l1 at Q1, and the geodesic l′1 through Q and orthogonal to l2,
intersecting l2 at Q2. In terms of these geometric constructions the coordinates (r, φ), (u, y)

or (x, v) are defined as follows.
The (geodesic) polar coordinates (r, φ) of Q relative to the origin O and the positive

geodesic ray of l1 are the distance r between Q and O measured along l, and the angle φ

between l and the positive ray l1 measured around O (Figure A1).
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Figure A2. The ‘parallel’ coordinates (u, y) and (v, x). The diagram depicts the geometrical
meaning of the coordinates (u, y) and (v, x), for the same situation and with the same conventions
as in figure A1. The lines l′1, l

′
2 are geodesics through Q orthogonal to l2, l1, respectively. The

coordinates u, x have label κ1 and are defined near O in both the Riemannian and pseudo-
Riemannian cases. The coordinates v, y have label κ1κ2 and the corresponding geodesics are
represented as dashed; in the pseudo-Riemannian case this means these geodesics are spacelike.
In all cases the ordinary sign conventions applies. Note the natural interpretation of all coordinates
as canonical parameters of some elements in one-parameter subgroups of translations along the
lines l1, l2, l

′
1, l

′
2 or of rotations around the point O, relatively to some generators whose scaling is

already fixed; in the locally Lorentzian case the quantities v, y, whose label is κ1κ2, are related to
the length as determined by the metric in the space S2

κ1[κ2] by a factor
√

κ2.

The (geodesic) parallel coordinates (u, y) of Q relative to the axes l1, l2 are defined as
follows. The coordinate u is the canonical parameter of the element in the one-dimensional
subgroup of translations along l1, generated by P1 and with label κ1, which brings O to Q1;
this value coincides with the distance between O and Q1 computed along l1 with the CK space
metric (here as in the previous case, this canonical parameter is determined uniquely, as the
generator P1 is precisely determined by the commutation relations (4) and cannot by scaled
without changing κ1, κ2 which are taken here as fixed from the outset). The coordinate y is
the canonical parameter of the element in the one-dimensional subgroup of translations along
l′2, generated by euP1P2 e−uP1 and with label κ1κ2, which brings Q1 to Q; this value is related
with the distance between Q1 and Q computed along l′1 with the CK space metric by a factor√

κ2 (note that in the Lorentzian case y is always real, yet both a spacelike separation and
√

κ2

are pure imaginary), refer to figure A2.
The (geodesic) parallel coordinates (v, x) of Q relative to the axes l1, l2 are defined as

follows. The coordinate v is the canonical parameter of the element in the one-dimensional
subgroup of translations along l2, generated by P2 and with label κ1κ2, which brings O to Q2;
this value is related with the distance between O and Q2 computed along l2 with the CK space
metric by a factor

√
κ2, so that v is always real even in the Lorentzian case. The coordinate x is

the canonical parameter of the element in the one-dimensional subgroup of translations along
l′1, generated by evP2P1 e−vP2 and with label κ1, which brings Q2 to Q; this value coincides
with the distance between Q2 and Q computed along l′1 with the CK space metric.

As a pertinent final remark, we stress that in the general κ1 �= 0 case, we have u �= x and
v �= y; only in flat spaces (whether Euclidean or Minkowskian) do the equalities x = u, v = y

hold.

Appendix B. Conics in spaces of constant curvature

This is only a reminder of the basics. For more details in the general CK case with arbitrary
κ1, κ2, see [20]. The conics in the three Riemannian cases (with κ2 = 1) are also discussed in
[34].
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The geometric definition of conics makes sense in any 2D space of constant curvature
κ1 and non-degenerate metric (κ2 �= 0) and involves focal elements, i.e., either points which
are assumed oriented or lines (geodesics of the intrinsic CK metric) which we assume to be
oriented and cooriented. There are three generic types of conics in a CK space S2

κ1[κ2] defined
as follows.

An ellipse/hyperbola will be the set of points with a constant sum/difference 2a of
distances r1, r2 to two fixed points F1, F2 separated by a distance 2f and called foci.

A parabola will be the set of points with a constant sum/difference of distances r1, r̃2

to a fixed point F1, called focus, and to a fixed line f2, called focal line (r̃2 is assumed to be
oriented); the oriented distance between F1 and f2 plays here the role of focal separation.

An ultraellipse/ultrahyperbola will be the set of points with a constant sum/difference
2a of oriented distances r̃1, r̃2 to two fixed intersecting lines f1, f2 separated by an angle 2F

and called focal lines.
These three pairs of curves, each pair sharing the same focal elements, are the generic

conics in the generic CK 2D space of constant curvature κ1 �= 0, κ2 �= 0, and all the
remaining possible conics are either particular instances with focal separation vanishing
(f = 0, φ = 0, F = 0) or limiting cases, where some conic elements go to infinity (if
possible at all); both particular and limiting cases can be obtained as suitable limits from the
generic conics.

In particular, ellipses with vanishing focal separation are circles with centre at the (double)
focus, and ultraellipses with vanishing focal angle separation are equidistant curves with
baseline the (double) focal line. Circles and equidistant curves are curves of constant geodesic
curvature. On the sphere circles and equidistant curves coincide; this is clear on a sphere in
geographic coordinates, where these curves correspond to the constant latitude lines, which
are circles with centre at the pole and equidistants with base at the equator. In the hyperbolic
plane, circles and equidistants are different curves, and they have a common limiting case, the
horocycles. Collectively, these curves of constant geodesic curvature are called cycles.

The Kepler orbits are conics with a focus at the origin. Their equation involves two basic
parameters, the eccentricity e and the semilatus rectum p. Eccentricity is related to the major
semiaxis 2a and to the focal distance 2f , both quantities with label κ1, in the general CK
case, as e = Sκ1(2f )/Sκ1(2a), reducing to the Euclidean e = f/a when κ1 = 0. If the conic
is placed on its standard position, with the points on the conic with stationary distance to the
origin placed on the basic line l1, then the semilatus rectum is the y coordinate of the point on
the conic on the line l2; note this quantity has label κ1κ2 and its value is pure imaginary when
κ2 < 0, so that the combination

√
κ2Tκ1κ2(y) appearing in the conic equation is always real.

Harmonic oscillator orbits are conics with centre at the origin. In this case, the best choice
is to write the general equation in terms of two basic parameters, the two principal semiaxes,
denoted here as a, with label κ1, and b, with label κ1κ2.
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